

USER GUIDE

Oblique Shock Web Application

Keith Atkinson

21 September 2020

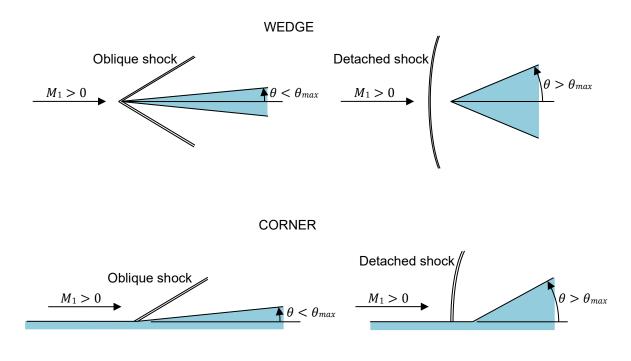
Atkinson Science welcomes your comments on this User Guide. Please send an email to <u>keith.atkinson@atkinsonscience.co.uk</u>.

2

Contents

1	Introduction	5
2	User interface	6
3	Further reading	12
4	References	13

Figures


Figure 1	Oblique (attached) shock and detached shock	5
Figure 2	User interface	6
Figure 3	Calculated properties	7
	Oblique shock solutions	
Figure 5	Weak and strong shocks for the solutions in Figure 3	9
Figure 6	Message if $\theta > \theta_{max}$	0
Figure 7	Properties for θ very close to zero	1

4

1 Introduction

You can find the Atkinson Science Oblique Shock web application at the web page <u>https://atkinsonscience.co.uk/WebApps/Aerospace/ObliqueShock.aspx</u>. There is also a theory guide that you can download from the same page. The application calculates the change in properties across a steady, two-dimensional oblique shock. It was developed for use with the International Standard Atmosphere, Ref. [1], for which the ratio of specific heats γ is defined to be 1.4. The application was created in Microsoft Visual Studio 2017.

An oblique shock is formed when a supersonic flow approaches a wedge or corner, as shown in Figure 1. The equations for the oblique shock show that if the deflection angle θ is less than θ_{max} , where θ_{max} is dependent on the upstream Mach number, then there are two possible oblique shock solutions: a weak shock and a strong shock. In both cases the shock is *attached* to the wedge or corner, as shown in Figure 1. The changes in flow conditions across a strong shock are more severe than those across a weak shock. The weak shock is far more common and is often seen at the outer surfaces of supersonic aircraft. The strong shock tends to be seen only in internal flows where the flow must adjust to a high-pressure downstream condition. If $\theta > \theta_{max}$ then a *detached* shock is formed as shown in Figure 1. The oblique shock application does not deal with the detached shock and will inform the user when $\theta > \theta_{max}$.

Figure 1 Oblique (attached) shock and detached shock

2 User interface

The user interface of the web application is shown in Figure 2. The interface consists of two boxes. The upper box displays the properties of the flow upstream of the shock, and the lower box displays the properties of the flow downstream of the shock, with the properties for the weak shock in the left-hand column and the properties for the strong shock in the right-hand column. The user must enter three properties into the upper box before clicking the Calculate button to determine all of the other properties.

Figure 2 User interface

Download the <u>User Guide</u> in PDF format Download the <u>Theory Guide</u> in PDF format							
	Upstream	of shock					
 Geometric altitude Geopotential altitude 	m m	Temperature	К				
Mach number		Pressure	Pa				
○ Speed	m s^-1	Density	kg m^-3				
Deflection angle	deg	Static enthalpy	kJ kg^-1				
C	alculate	Entropy	kJ kg^-1 K^-1				
		Speed of sound	m s^-1				
We	ak shock	Strong	ashock				
	ak shock) shock				
We Mach number	ak shock	Strong Mach number) shock				
Mach number		Mach number	_				
Mach number	m s^-1	Mach number	m s^-1				
Mach number	m s^-1	Mach number	m s^-1				
Mach number	m s^-1 K Pa	Mach number Speed Temperature Pressure	m s^-1 K Pa				
Mach number Speed Speed Sevent	m s^-1 K Pa kg m^-3	Mach number Speed Temperature Pressure Density	m s^-1 K Pa kg m^-3				
Mach number Speed	m s^-1 K Pa kg m^-3 kJ kg^-1	Mach number Speed Temperature Second Density Static enthalpy	m s^-1 K Pa kg m^-3 kJ kg^-1				

ATKINSON SCIENCE LIMITED

The application is intended for use with the International Standard Atmosphere, Ref. [1]. Consequently, the temperature, pressure and other thermodynamic properties of the air upstream of the shock can all be obtained easily, given the geometric or geopotential altitude. The user can choose between entering the geometric altitude or the geopotential altitude. The user must also enter the Mach number or speed of the flow and the deflection angle θ . The ratio of the specific heats γ of the International Standard Atmosphere is defined to be 1.4.

Figure 3 shows the output from the web application after the user has entered a geometric altitude of 10,000 m, a Mach number of 2.0, and a deflection angle of 15°.

Figure 3 Calculated properties

Oblique Shock							
Download the <u>User Guide</u> in PDF format Download the <u>Theory Guide</u> in PDF format							
	Upstream	of shock					
 Geometric altitude Geopotential altitude 	10000.0 m 9984.29 m	Temperature	223.252	к			
Mach number	2.0	Pressure	26499.8	Pa			
O Speed	599.063 m s^-1	Density	0.41351	kg m^-3			
Deflection angle	15.0 deg	Static enthalpy	224.145	kJ kg^-1			
Ca	Entropy	-0.6716	kJ kg^-1 K^-1				
	Speed of sound	299.531	m s^-1				
Wea	ak shock		Strong sho	ock			
Mach number 1.445	Mach number	0.64397					
Speed 487.8	Speed	248.681	m s^-1				

371.076 K

115395. Pa

1.08333 kg m^-3

372.561 kJ kg^-1

79.8316 deg

Speed of sound 386.168 m s^-1

-0.5834 kJ kg^-1 K^-1

Temperature

Pressure

Density

Entropy

Wave angle

Static enthalpy

283.390 K

58158.0 Pa

0.71492 kg m^-3

284.524 kJ kg^-1

45.3436 deg

Speed of sound 337.472 m s^-1

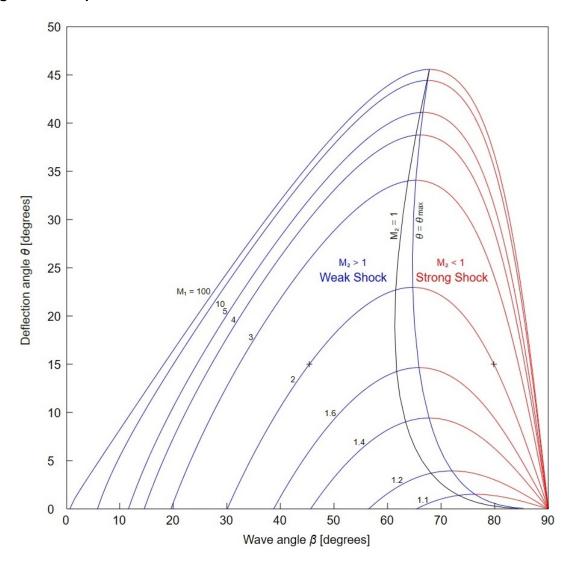
-0.6576 kJ kg^-1 K^-1

Temperature

Pressure

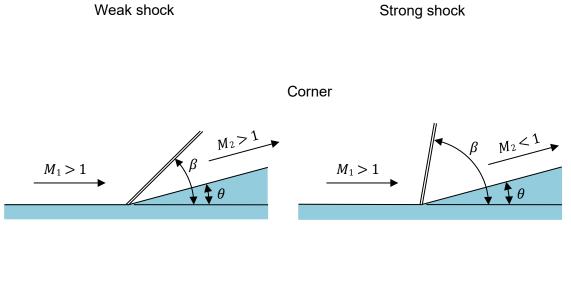
Density

Entropy


Wave angle

Static enthalpy

ATKINSON SCIENCE LIMITED


Figure 4 is a plot of all possible oblique shock solutions. The weak shock and the strong shock calculated by the web application are indicated on the plot by crosses (+). The calculated wave angles of the weak shock and the strong shock are 45.34° and 79.83°, respectively. Figure 5 shows how the shocks appear when formed at a wedge or a corner.

From Figure 4 we can see that for a Mach number of 2.0, θ_{max} is approximately 23°. If the user changes the deflection angle from 15° to, say 25°, and clicks the Calculate button, then the application will display a message as shown in Figure 6.

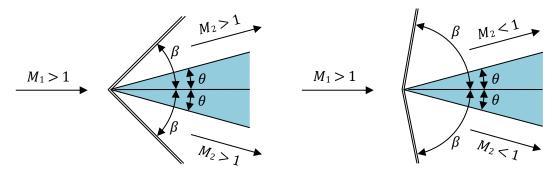


Figure 4 Oblique shock solutions

Figure 5 Weak and strong shocks for the solutions in Figure 3

Wedge

Figure 6 Message if $\theta > \theta_{max}$

Oblique Shock

Download the <u>User Guide</u> in PDF format Download the <u>Theory Guide</u> in PDF format

	Up	stream of shock		
Geometric altitude	10000.0 m	Temperature		к
○ Geopotential altitude) m	Pressure		Pa
Mach number Ospeed	2.0 m s^-	-1 Density		kg m^-3
Deflection angle	25.0 deg	Static enthalpy		kJ kg^-1
Ca	alculate	Entropy		kJ kg^-1 K^-1
There is no soluti is detached. Eithe number or reduce t	r increase the	Mach	d	m s^-1
to produce an obli		-		

Weak	shock	Strong sh	Strong shock		
Mach number	T	Mach number	T.		
Speed	m s^-1	Speed	m s^-1		
Temperature	к	Temperature	к		
Pressure	Pa	Pressure	Pa		
Density	kg m^-3	Density	kg m^-3		
Static enthalpy	kJ kg^-1	Static enthalpy	kJ kg^-1		
Entropy	kJ kg^-1 K^-1	Entropy	kJ kg^-1 K^-1		
Speed of sound	m s^-1	Speed of sound	m s^-1		
Wave angle	deg	Wave angle	deg		

The user may not enter a deflection angle θ less than or equal to zero. However, if the user enters a very small value, say 0.001°, then he/she will effectively obtain the two solutions along the axis $\theta = 0$, as shown in Figure 7. The weak shock is vanishingly weak, with essentially no change in the flow properties across the shock. The wave angle β for the weak shock is then called the Mach angle μ . The wave angle for the strong shock is essentially 90°. Unlike the weak shock, the strong shock continues to produce a change in the flow properties.

Oblique Shock

Figure 7 Properties for θ very close to zero

Static enthalpy

Entropy

Wave angle

224.148 kJ kg^-1

30.0008 deg

Speed of sound 299.534 m s^-1

-0.6716 kJ kg^-1 K^-1

			ad the <u>User (</u> d the <u>Theory</u>				
Upstream of shock							
 Geometric altitude 	ude	10000.0] m	Temp	erature	223.252	к
○ Geopotential al	Geopotential altitude 9984.29 m			Press	ure	26499.8	Pa
● Mach number ○ Speed		2.0	m s^-1	Densi	itv	0.41351	kg m^-3
Deflection angle		0.001	deg		enthalpy	224.145	kJ kg^-1
Denection angle		Iculate	g deg	Entrop		-0.6716	kJ kg^-1 K^-1
				Speed	d of sound	299.531	m s^-1
	Wea	k shock				Strong sho	ock
Mach number	1.9999	96		Mach	number	0.57735	
Speed 599.057 m s^-1 Temperature 223.255 K Pressure 26501.3 Pa				Spee	d	224.648	m s^-1
				Temp	perature	376.737	к
				Press	sure	119249.	Pa
Density	0.413	52 kg m/	-3	Dens	ity	1.10269	kg m^-3

Static enthalpy

Entropy

Wave angle

378.244 kJ kg^-1

89.9994 deg

Speed of sound 389.103 m s^-1

-0.5777 kJ kg^-1 K^-1

3 Further reading

The equations of the oblique shock and the assumptions on which they are based are set out in Ref. [2], which can be downloaded from the Atkinson Science web site, <u>https://atkinsonscience.co.uk</u>. The derivation of the equations can be found in text books on compressible flows, such as Refs. [3] and [4]. Not all text books describe a method of determining the wave angle β from the upstream Mach number M_1 and deflection angle θ . The method used in the web application is explained in Ref. [2].

The Atkinson Science web site has a free-to-use web application for determining the properties of the International Standard Atmosphere, given the geometric or geopotential altitude. There is also a user guide and a theory guide that can be downloaded.

4 References

- 1. International Standard Atmosphere, ISO 2533:1975, International Standards Organisation, 1975.
- 2. K. N. Atkinson, *Oblique Shock Web Application, Theory Guide*, Atkinson Science Limited, 21 September 2020 (download from <u>https://atkinsonscience.co.uk</u>).
- 3. J. D. Anderson, *Modern Compressible Flow with Historical Perspective*, 3rd Ed., McGraw-Hill, 2004.
- 4. H. W. Liepmann and A. Roshko, *Elements of Gasdynamics*, Dover, 2001.